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DERIVATION OF INITIAL STATES IN INVESTIGATION OF NUCLEATION BY THE 

THERMODIFFUSION-CHAMBER METHOD 

V. T. Borukhov, N. V. Pavlyukevich, I. Smolik, 
and S. P. Fisenko 

UDC 536.42 

A method of deriving the dimensions and coordinates of new-phase nuclei (ini- 
tial states) in investigating nucleation in spatially inhomogeneous systems 
is developed. The results of analyzing experimental data taking account of 
the possible influence of Brownian motion on the nucleation kinetics are 
given. 

To study volume condensation (nucleation), thermodiffusional chambers are in increas- 
ing use. The basic aim of experimental investigations in this area is to find the depend- 
ence of the nucleation rate I on the degree of supersaturation S with a known temperature 
of the vapor-gas mixture. Unambiguous interpretation of the experimental results is dif- 
ficult, however, because of two factors: first, the region of maximum supersaturation 
within which nuclei of new phase are formed is of finite size; second, the optical methods 
of recording new-phase particles used in the experimental investigations permit the record- 
ing of particles which are of the order of a micron in size, whereas the critical nuclei 
of new phase are of size R ~ 10 -9 m. 

In connection with this, a method of deriving the initial states using experimental 
data on the parameters of the new-phase particles [3] is developed here on the basis of 
a mathematical model of the growth and motion of the new-phase particles forming in the 
thermodiffusional chamber [i, 2]. 

As shown by experiments, the interpretation of experimental data on the nucleation 
of vapor in the thermodiffusion chamber may be divided into three stages. These stages, 
which differ both in the depth of analysis and in the volume of experimental data re- 
quired, will be described in sequence. The simplest is the first, in which minimal ex- 
perimental data is required. 

Stage 1 (Phenomenological) 

Suppose that there is experimental information that new-phase nuclei form in the 
chamber with temperatures of the lower and upper plates T l and T 2 and ballast-gas pres- 
sure P and are able to grow, in these conditions, to dimensions permitting recording by 
optical methods. In this case, as shown in [2], it is necessary to plot graphs of the 
dimensionless quantity Ar where A~(g*(z)) is the work of critical-nucleus 
formation in conditions corresponding to the coordinate z. 

Note that in the present work all the notation is analogous to that in [2]. In Fig. 
i, the graph of the dimensionless work of critical-nuclei formation of dioctylphthalate 

A. V. Lykov Institute of Heat and Mass Transfer, Academy of Sciences of the Belorus- 
sian SSR, Minsk. Institute of Theoretical Principles of Chemical Processes, Prague. 
Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 59, No. 6, pp. 1011-1016, December, 
1990. Original article submitted November 27, 1989. 

0022-0841/90/5906-1607512.50 �9 1991 Plenum Publishing Corporation 1607 



IT,,f~ 

L ZO l 
fff . . . . . . . . . . . .  

$;rl 70 . . . . . .  

Z j ~  ,h i ,  ,]D , , . 
�9 O/50,D O,7 0,8 0,7 7,Ozlh 0 42 0,7 0,6 4Z7 40 z/D" 

Fig. i Fig. 2 

Fig. i. Dependence of the dimensionless work of formation of a critical 
new-phase nucleus on the coordinate of the point of nucleus formation, 
when I ~ 1 cm-~'sec-l; T l = 452 K; T 2 = 371 K; h = 2.67.10 -2 m. 

Fig. 2. Variation in supersaturation S(z) within the chamber with steady 
operating conditions, for the same conditions as in Fig. i. 

(DOP) is shown. The minimum of this curve corresponds to the point with the coordinate 
z/h = 0.75. The points z/h = a and z/h = b, for which the dimensionless work of nucleus 
formation differs by one from the minimal value define the region [a, b], within which it 
is necessary to take account of the spontaneous formation of new-phase nuclei. As is known, 
for spatially homogeneous systems [4, 5] I ~ exp(-A~(g*)/kT); it may be expected that this 
dependence will basically be retained also for nucleation in spatially inhomogeneous sys- 
tems [6]. 

To date, most investigations [7, 8] have been confined to determining the supersatura- 
tion profile S(z) = n(z)/ns(T(z)), where n(z) and ns(T(z)) are the vapor density and satu- 
rated vapor density at temperature T(z), respectively. It is assumed here that the new- 
phase nuclei are formed close to the maximum of S. It is evident from Fig. 2 that the maxi- 
mum of S does not coincide with the minimum of the dimensionless work of critical-nucleus 
formation (this is confirmed by calculations for other cases). Two conclusions follow from 
this: i) the maximum nucleation rate corresponds to a different temperature than that usual- 
ly assumed [7, 8]; 2) the zone of the chamber where nucleation occurs is broader than pre- 
viously thought. This noncoincidence of the extrema may possibly lead to difference in 
the value of the critical supersaturation found by the thermodiffusion-chamber method from 
values obtained by other methods (using a Wilson chamber, etc.) [8]. 

Thus, in the first stage, using experimental information on the nucleation rate, it is 
only possible to determine how I depends on the maximum degree of supersaturation or on 
the minimum of dimensionless work of nucleus formation, and to estimate the dimensions of 
the region where nucleation occurs. Note that neither A~(g*(z))/kT(z) nor S(z) depends 
on the ballast-gas pressure. 

Stage 2 (Kinetic) 

In the second stage in deriving the initial state, it is necessary to have additional 
information on the new-phase particles, in particular, that the particles are of radius R 
at height z 0 or to have the distribution function over the radius f(RIz0). Note that, in 
the conditions of a thermodiffusional chamber, the particle velocity may practically be used 
instead of its radius [2], since there is a unique relation between the particle velocity 
and radius. It is well known that it is considerably simpler to measure the particle velo- 
city than its radius. In addition, in the second stage, it is also necessary to know the 
ballast-gas pressure P, which has a significant influence on the growth and motion of new- 
phase particles forming in the chamber. 

The mathematical model of particle growth and motion in a thermodiffusional chamber 
developed in [1, 2] takes the form 

gx 
-v; (1) 

dt 

d (Mu) = - -ME q- FTp Jr FR; (2 )  
dt 
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TABLE i. Experimental Data on the Parameters of 
the Distribution of New-Phase Particles over the 
Chamber Height 

He!iLtm 
pressure 
P" i0 -3 , Pa 

14,1 
7,3 
2,9 
1,82 

Coordinane z/h of distributiQn function of new- 
over99 on 

flower boundary maximum upper boundary 

0,8 
0,82 
o, 835 
0,83 

0,87 
0,89 
0,92 
0,925 

0,965 
0,99 

1 
1 

dR 
- -  = L ( n ( z =  x ) - - n  8 ( T ( z =  x))), ( 3 )  

dt 

where x, v, R are the coordinate, velocity, and radius of the particle, respectively. The 
density n(z) and temperature T(z) fields are determined with the necessary accuracy from 
steady solutions of the diffusion and heat-conduction equations. Note that the thermo- 
phoretic force FTp and the resistance force F R depend on the Knudsen number Kng, and the 
mass-transfer coefficient L depends on Kn v [i, 2]. 

Since Eqs. (I)-(3) constitute a nonlinear system of three differential equations of 
first order in the time derivatives, the initial state of the new-phase particles which form 
may be derived by inverting the time t + -t and solving the system [9]. The initial values 
chosen here are the experimental values of the particle coordinate x, its radius R, and the 
velocity v. The particle velocity v may practically always [2] be calculated in the quasi- 
steady approximation, and then to investigate a system of two differential equations. The 
experimental data for DOP obtained by Smolik are used as the initial data. 

Table 1 gives the experimental data on the distribution function of new-phase parti- 
cles over the height of the chamber at the instant of visualization obtained by photography 
in a laser knife~ The nucleation rate I ~ 1 cm-3"sec -I, T l = 462 K, T 2 = 371K. Helium 
is used as the ballast gas. 

Trajectories on the (R, z) plane obtained as a result of integrating Eqs. (i)-(3) are 
shown in Fig. 3. As established in [2], the visualization radius for DOP particles is 4.5 
~m. Curve 1 describes the trajectory of particles making a contribution to the maximum of 
the experimentally observable distribution function of the new-phase particles on visual- 
ization. Curves 2 and 3 are the particle trajectories recorded, respectively, at the lower 
and upper boundaries of the distribution function of new-phase particles with respect to 
the height on visualization. It is interesting to note that kinetic calculation at a bal- 
last-gas pressure of 1.4"104 Pa and above completely agrees with the earlier thermodynamic 
calculation (in the first stage). With reduction in ballast-gas pressure, as a result of 
analyzing the experimental data, an interesting result is obtained: the coordinate of 
maximum nucleation rate coincides with the minimum of dimensionless work of nucleus forma- 
tion, but the width of the region within which particle formation occurs is markedly re- 
duced. This is evidently associated with the influence of Brownian motion of the new-phase 
nucleus on the nucleation kinetics [6], which increaes with increase in the Brownian dif- 
fusion coefficient D B of the new-phase particles. It is known that D B ~ I/P in free- 
molecular conditions [i0]. Note that there is a close mathematical analogy between the 
nucleation kinetics in a spatially inhomogeneous system [6] and the kinetics of binary 
nucleation, appearing in an identical structure of the kinetic equation and the presence 
of a saddle point [ii, 12]. 

The trajectory in Eq. (4) describes the growth and motion of a new-phase particle 
formed at the point z/h = 0.75 with a ballast-gas pressure of 1.4"105 Pa. As shown by the 
calculations, increase in ballast-gas pressure means that more and more new-phase particles 
are unable to reach the visualization radius in the time available. In other words, an 
"effect" of decrease in nucleation rate with increase in ballast-gas pressure is experi- 
mentally observed. Of course, the specific value of the ballast-gas pressure at which 
these effects begin to appear depends on many factors, but they are all taken into account 
in the mathematical model developed in [i, 2]. 
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Fig. 3. Trajectory of motion of new- 
phase particles on the (R, z) plane; 
T I = 462 K, T 2 = 371 K, h = 2.67"10 -2 
m: 1-3) P = 1.4.104 Pa, solution of 
(1)-(3) in inverse time (t § -t); 4) 
helium pressure P = 1.4-102 Pa, solu- 
tion in "forward" time. R, Bm. 

Calculations also show that a 10% spread in determining the particle radius leads to 
a 3% spread in determining the coordinate of particle nucleation. However, this is the 
case if the experimental radius is less than the free-fall radius R [2]; particles with 
radius less than R tend to the upper plate under the influence of the thermophoretic force. 
If the radius of the new-phase particle is greater than the free-fall radius R at the time 
of measurement, there are considerably stronger requirements on the accuracy of measuring 
the radius, in view of the characteristics of particle growth and motion noted in [i]. 
Small spread in determining the particle parameters will lead to large errors in deriving 
the initial states, as a result of the nonlinearity o~ the model employed. The physical 
reason for this is that, when R > R, as a rule, there is a shift from free-molecular to 
diffusional conditions of particle growth. 

Stage 3 

Investigations with several measurements along the particle trajectory correspond to 
the third stage of deriving the initial state of new-phase particles. For example, at time 
tl, coordinate x I and radius R I are measured; at time t2, correspondingly, x 2 and R2; and 
so on. It is evident that the use of additional information offers the possibility of para- 
metric identification of the mathematical model. In particular, by specifying the data 
at time t I as the initial conditions and then solving the equations of the mathematical 
model, the fitting factors may be found by minimizing the square of the deviation of the 
solution obtained at time t 2. Unfortunately, such experimental data are not available at 
present. 

CONCLUSIONS 

i. The expediency of using the quantity A~(g*(z))/kT(z) in analyzing experiments in 
a thermodiffusion chamber has been shown. Analysis of Smolik's experimental data confirms 
that nucleation occurs close to the minimum of the dimensionless work of formation of a 
new-phase nucleus. 

2. It is found that it is most expedient to perform experiments at ballast-gas pres- 
sures such that the free-fall radius R of the new-phase particles [i] is a few microns. 
In this case, the role of errors in measuring the particle radius is considerably reduced. 

3. The extreme importance of conducting experiments with the same values of T l and 
T 2 but ballast-gas pressures differing by approximately an order of magnitude is estab§ 
lished. In this case, the use of experimental data and model calculations on the growth 
and motion of new-phase particles [i, 2] permits the isolation of the kinetic effects due 
to nucleation and the subsequent growth of the nuclei to sizes for which optical methods 
may be used. 

4. The use of several successive measurements of the parameters of the new-phase 
particles (the dependence of the particle velocity or radius on its position in the chamber) 
is proposed in experimental investigations; this offers the possibility of parametric iden- 
tification of the mathematical model and, in particular, determination of the effective 
condensation and accommodation coefficients. 

NOTATION 

g*(z), number of molecules in the critical nucleus formed at the point z; k, Boltzmann 
constant; T, temperature; M = (4~R3/3)p~, mass of new-phase particle; p~, its density; g = 
9.8 m/see2; Kn~ = ~/R; Kn v ~v/R; the approximate mean free path lengths ~g and ~v were 
defined in [I,-2]. - 
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DIFFUSIONAL MASS TRANSFER IN LIQUID MIXTURES 

S. G. D'yakonov, D. V. Proshchekal'nikov, G. S. D'yakonov, 
and R. A. Ibragimov 

UDC 532.72 

The general form of the equations for determining the flow relations in liquid 
mixtures is obtained. A closed calculation algorithm and an experimental meth- 
od of holographic interferometry are developed for the identification of the 
binary-diffusion coefficients. A ternary mixture is investigated by the meth- 
od of molecular dynamics. 

Equation for Determining Flow Relations in Liquid Mixtures 

It is known that any closed nonequi!ibrium macroscopic system passes to a state of 
statistical equilibrium in the course of its relaxation time. This state of the system 
is described by an N=particle Gibbs distribution function [i]. For the large canonical 
ensemble of a v-component system, it takes the form 

~ i 

where A is a normalization factor; ~, N~ are the chemical potential and number of particles 
of component ~. 

However, in practice, it is necessary to consider the system through times comparable 
with, or even less than, the relaxation time. In this case, its description may be con- 
structed, as suggested in [2], by reducing the number of parameters characterizing the 
nonequilibrium macrosystem in the course of relaxation. 
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